10,964 Pages

Bigrand Destrutrixul is equal to (...((200![200([200([200(200)200])200])200])![200([200([200(200)200])200])200])...)![200([200([200(200)200])200])200] (with Grand Destrutrixul parentheses) using Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

Contents

Etymology

The name of this number is based on prefix "bi-" and the number "Grand Destrutrixul".

Approximations

Notation Approximation
Bird's array notation $$\{200,4,202[1[1\neg200[1\neg200[1\neg202]200]200]200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,4,202[1[1/200[1[1/200 \\ [1[1/201\sim2]200]2\sim2]200]2\sim2]200]2\}$$
Fast-growing hierarchy $$f_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}}199)+199}}199)+199}}199)+200}^2(f_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}}199)+199}}199)+199}}199)+199}(200))$$
Hardy hierarchy $$H_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}}199)+199}}199)+199}}199)\times(\omega^{200}2+\omega^{199})}(200)$$