The Bachmann-Howard ordinal is a large countable ordinal, significant for being the proof-theoretic ordinal of Kripke-Platek set theory with the axiom of infinity[1][2][3][footnote 1]. It is the supremum \(\vartheta(\varepsilon_{\Omega+1})\) of \(\vartheta(\alpha)\) for all \(\alpha < \varepsilon_{\Omega+1}\) with respect to Weiermann's \(\vartheta\) and is presented as \(\psi_0(\Omega_2) = \psi_0(\psi_2(0))\) with respect to Buchholz's \(\psi\). The Bachmann-Howard ordinal has also been denoted as \(\eta_0\)[4], however this is rare and can be confused with \(\varphi(3,0)\) in Veblen's function.

An early version of Bird's array notation was limited by \(\vartheta(\varepsilon_{\Omega+1})\).

Sources

  1. Jäger, Gerhard. Die konstruktible Hierarchie als Hilfsmittel zur beweistheoretischen Untersuchung von Teilsystemen der Mengenlehre und Analysis. na, 1979.
  2. Pohlers, Wolfram. Proof theory: The first step into impredicativity. Springer Science & Business Media, 2008.
  3. Michael Rathjen, "Fragments of Kripke–Platek Set Theory with Infinity" (a survey without a proof or a reference to the first source)
  4. J. Ven der Meeren, M. Rathjen, A. Weiermann, An order-theoretic characterization of the Howard-Bachmann-hierarchy (p.1)

Footnotes

  1. Ordinal analyses of set theory was first established by Jäger. Jäger defined proof-theoretic ordinal for set theory, and analysed \(\mathsf{KP}\omega\). This history is stated on the Pohlers' book cited above.


See also

Basics: cardinal numbers · ordinal numbers · limit ordinals · fundamental sequence · ordinal notation · transfinite induction
Theories: Robinson arithmetic · Presburger arithmetic · Peano arithmetic · KP · second-order arithmetic · ZFC
Model Theoretic Concepts: structure · elementary embedding
Countable ordinals: \(\omega\) · \(\varepsilon_0\) · \(\zeta_0\) · \(\eta_0\) · \(\Gamma_0\) (Feferman–Schütte ordinal) · \(\varphi(1,0,0,0)\) (Ackermann ordinal) · \(\psi_0(\Omega^{\Omega^\omega})\) (small Veblen ordinal) · \(\psi_0(\Omega^{\Omega^\Omega})\) (large Veblen ordinal) · \(\psi_0(\varepsilon_{\Omega + 1}) = \psi_0(\Omega_2)\) (Bachmann-Howard ordinal) · \(\psi_0(\Omega_\omega)\) with respect to Buchholz's ψ · \(\psi_0(\varepsilon_{\Omega_\omega + 1})\) (Takeuti-Feferman-Buchholz ordinal) · \(\psi_0(\Omega_{\Omega_{\cdot_{\cdot_{\cdot}}}})\) (countable limit of Extended Buchholz's function)‎ · \(\omega_1^\mathfrak{Ch}\) · \(\omega_1^{\text{CK}}\) (Church-Kleene ordinal) · \(\omega_\alpha^\text{CK}\) (admissible ordinal) · recursively inaccessible ordinal · recursively Mahlo ordinal · reflecting ordinal · stable ordinal · \(\lambda,\zeta,\Sigma,\gamma\) (ordinals on infinite time Turing machine) · List of countable ordinals
Ordinal hierarchies: Fast-growing hierarchy · Slow-growing hierarchy · Hardy hierarchy · Middle-growing hierarchy · N-growing hierarchy
Ordinal functions: enumeration · normal function · derivative · Veblen function · ordinal collapsing function · Madore's function · Feferman's theta function · Buchholz's function · Extended Buchholz's function · Jäger's function · Rathjen's psi function · Rathjen's Psi function · Stegert's Psi function
Uncountable cardinals: \(\omega_1\) · omega fixed point · inaccessible cardinal \(I\) · Mahlo cardinal \(M\) · weakly compact cardinal \(K\) · indescribable cardinal · rank-into-rank cardinal
Classes: \(V\) · \(L\) · \(\textrm{On}\) · \(\textrm{Lim}\) · \(\textrm{AP}\) · Class (set theory)

Community content is available under CC-BY-SA unless otherwise noted.