Fandom


このページには巨大数クラス別に大別し、小さいものから大きいものへと順番に並べる。ただし、定義が完成していないものに関しては値が意味を持たないので、代わりに「完成した場合に想定されている近似値」を書く。

クラス0 (\(0 - 6\))

巨大数とは言えないが、3トリトリグラハム数トリアクルスビッグブーワなど様々な巨大数の素になる数である。

クラス1 (\(7 - 10^{6}\))

巨大数とは言えないが、 10無量大数グーゴル不可説不可説転グーゴルプレックスゴラプルスゴラプルスプレックスミーミーミーロッカプーワ・ウンパなど、100ビッグホスブクワハなどの素になる数である。

クラス2 (\(10^{6} - 10^{10^{6}}\))

名前
ダイアログ \(10^{10}\)
\(10^{20}\)
最小の6倍完全数 \(154345556085770649600\)
デュトリメヴァルカ \(2222222222222222222222\)
アボガドロ数 \(N=602214076000000000000000\)
𥝱 (秭・杼) \(10^{24}\)
既知で最大の十進法表記で0を含まない2の累乗数 \(2^{86}=77371252455336267181195264\)
\(10^{28}\)
ベルフェゴール素数 \(1000000000000066600000000000001\)
\(10^{32}\)
\(10^{36}\)
単精度浮動小数点数の最大値 \(\approx3.4028\times10^{38}\)
既知で最大の二重メルセンヌ素数 \(2^{2^{127-1}}-1\approx1.70\times10^{39}\)
\(10^{40}\)
大数仮説 \(\approx10^{40}\)
載 (下数) \(10^{44}\)
\(10^{48}\)
恒河沙 \(10^{52}\)
阿僧祇 \(10^{56}\)
最小の7倍完全数 \(\approx1.413\times10^{56}\)
那由他 \(10^{60}\)
ビジンティリオン (ショートスケール) \(10^{63}\)
不可思議 \(10^{64}\)
無量大数 \(10^{68}\)
ドゥオビジンティリオン (ショートスケール) \(10^{69}\)
ガジリオン (ショートスケール) \(10^{74}\)
エディントン数 \(136\times2^{256}\approx1.58\times10^{79}\)
セクスビジンティリオン (ショートスケール) \(10^{81}\)
11以下の数で割り切れない最小の過剰数 \(7.97\times10^{87}\)
ノベンビジンティリオン (ショートスケール) \(10^{90}\)
トリジンティリオン (ショートスケール) \(10^{93}\)
ファイゴル \(\lfloor10^{99}\phi\rfloor\approx1.62\times10^{99}\)
イーゴル \(\lfloor10^{99}e\rfloor\approx2.72\times10^{99}\)
パイゴル \(\lfloor10^{99}\pi\rfloor\approx3.14\times10^{99}\)
グーゴル \(10^{100}\)
グーゴルティーン \(10^{100}+10\)
グープロル \(10^{100}+267\)
ブープロル \(10^{100}+949\)
トループロル \(10^{100}+1243\)
クアドループロル \(10^{100}+1293\)
グーゴルティー \(10^{101}\)
矜羯羅 \(10^{112}\)
シャノン数 \(10^{120}\)
既知で最小の8倍完全数 \(\approx8.268\times10^{132}\)
ドバジャグラニサマニ \(10^{145}\)
ガーグーゴル \(10^{200}\)
バイグーゴル \(10^{201}+10^{100}\)
阿伽羅 \(10^{224}\)
既知で最小の9倍完全数 \(5.613\approx\times10^{286}\)
トリグーゴル \(10^{302}+10^{201}+10^{100}\)
センティリオン \(10^{303}\)
倍精度浮動小数点数の最大値 \(\approx1.7977\times10^{308}\)
\(\pi(n)>\textrm{li}(n)\)が真となる最小の\(n\)の推定される上界[1] \(e^{727.9513386}\approx1.397162\times10^{316}\)
ファクスル \(200!\approx7.89\times10^{374}\)
クアドリグーゴル \(10^{403}+10^{302}+10^{201}+10^{100}\)
既知で最小の10倍完全数 \(\approx4.486\times10^{638}\)
最小のタイタニック素数 \(10^{999}+7\)
大グーゴル \(10^{1000}\)
メヴィリオン \(10^{1002}\)
既知で最大のレピュニット素数 \(\underbrace{111\cdots111}_{1031}\)
奇数の完全数の下界 \(10^{1500}\)
第一軍団数 \(666^{666}\approx2.72\times10^{1880}\)
既知で最小の11倍完全数 (かつ既知で最大のkのk倍完全数) \(\approx2.519\times10^{1906}\)
ミリリオン \(10^{3003}\)
載 (上数) \(10^{4096}\)
四倍精度浮動小数点数の最大値 \(\approx1.1897\times10^{4932}\)
最小の巨大素数 \(10^{9999}+33603\)
グッウーゴル \(\frac{10^{100}(10^{10100}-1)}{10^{101}-1}\approx10^{10099}\)
バイグッウーゴル \(\frac{10^{100}(10^{20200}-1)}{10^{101}-1}\approx10^{20199}\)
ヒッチハイク数 (原作) の逆数 \(2^{276709}\approx5.12\times10^{83297}\)
アルキメデスの牛の問題の最小解 \(\approx7.76\times10^{206544}\)
無限の猿定理で『ハムレット』を出力する為の平均入力数 \(199479\times\log_{10}64\approx4.4\times10^{360783}\)
グーゴルゴング \(\text{E}100000=10^{100000}\)
既知で最大の確率的素数であるレピュニット \(\underbrace{111\cdots111}_{270343}\)
グーゴルプラックス \(\text{E}1000000=10^{1000000}\)

クラス3 (\(10^{10^{6}} - 10^{10^{10^{6}}}\))

名前
バベルの図書館の本の数 \(25^{1312000}\approx1.96\times10^{1834097}\)
ミリミリリオン \(10^{3000003}\)
既知で最大のメルセンヌ素数以外の素数 \(10223\times2^{31172165}+1\approx10^{9383761}\)
知られている最大の素数 \(2^{82589933}-1\approx1.49\times10^{24862048}\)
知られている最大の完全数 \(2^{82589932}(2^{82589933}-1)\approx1.11\times10^{49724095}\)
ヒッチハイク数 (映画) の逆数 \(2^{2079460347}\approx1.74\times10^{625979940}\)
トリアログ \(\text{E1#3}=10\uparrow\uparrow3=10^{10^{10}}\)
バリウム数 \((794843294078147843293.7+\frac{1}{30})\times e^{\pi^{e^{\pi}}}\approx10^{10^{11}}\)
第億期の数 \(((10^{8})^{10^{8}})^{10^{8}}=10^{8\times10^{16}}\)
デュクオメヴァルカ \(2[2,4]=2.2\times10^{10^{22}}\)
不可説不可説転 (旧訳) \(10^{7\times2^{122}}\approx10^{3.72\times10^{37}}\)
グーゴルプレックス \(\text{E100#2}=10^{10^{100}}\)
大グーゴルプレックス \(10^{(10^{100}+1)}\)
ガーグーゴルプレックス \(10^{2\times10^{100}}\)
グーゴルバン \((10^{100})!\approx10^{9.96\times10^{101}}\)
メヴォゴル \(10^{100}[10^{100}]\approx10^{10^{102}}\)
トリテット・ジュニア \(4\uparrow\uparrow4\approx10^{8.07\times10^{153}}\)
グーグーゴル \(\frac{10^{100}(10^{(10^{200}+10^{198})}-1)}{10^{101}-1}\approx10^{10^{200}}\)
エセトンプレックス \(\text{E303#2}=10^{10^{303}}\)
キロファクスル \((200!)!\approx10^{10^{377}}\)
リヴァイアサン数 \(10^{666}!\approx10^{6.66\times10^{668}}\)
第二軍団数 \(666!^{666!}\approx10^{1.61\times10^{1596}}\)
グーゴルプレクシゴング \(\text{E100000#2}=10^{10^{100000}}\)

クラス4 (\(10^{10^{10^{6}}}\) - \(10^{10^{10^{10^{6}}}}\))

名前
テトラログ \(\text{E1#4}=10^{10^{10^{10}}}\)
テリリオン \(10^{3\times10^{3\times10^{12}}+3}\approx10^{10^{10^{12})}}\)
デュクインメヴァルカ \(2[2,5]=10^{10^{10^{22}}}\)
第1スキューズ数 \(e^{e^{e^{79}}}\approx10^{10^{10^{34}}}\)
ドキリオン \(10^{3\times10^{3\times10^{36}}+3}\approx10^{10^{10^{36}}}\)
グーゴルプレックスプレックス \(10^{10^{10^{100}}}\)
フズグーゴルプレックス \(\text{Googolplex}^{\text{Googolplex}}=10^{10^{10^{100}+100}}\)
エセトンデュプレックス \(\text{E303#3}=10^{10^{10^{303}}}\)
メガファクスル \(((200!)!)!\approx10^{10^{10^{377}}}\)
第2スキューズ数 \(e^{e^{e^{e^{7.705}}}}\approx10^{10^{10^{963}}}\)
超リヴァイアサン数 \(\approx10^{10^{10^{2001}}}\)
グーゴルデュプレクシゴング \(\text{E100000#3}=10^{10^{10^{100000}}}\)
ホタリリオン \(10^{3\times10^{3\times10^{5}}+3}\approx10^{10^{10^{300000}}}\)

クラス5 (\(10^{10^{10^{10^{6}}}}\) - \(10^{10^{10^{10^{10^{6}}}}}\))

名前
ペンタログ \(\text{E1#5}=10^{10^{10^{10^{10}}}}\)
宇宙論で使われた最大の数 \(10^{10^{1.51\times10^{3883775501690}}}\approx10^{10^{10^{10^{10^{1.1}}}}}\)
デュヘキシメヴァルカ \(2[2,6]=10^{10^{10^{10^{22}}}}\)
ベティリオン \(10^{3\times10^{3\times10^{27}}}\approx10^{10^{10^{10^{27}}}}\)
グーゴルプレックスプレックスプレックス \(10^{10^{10^{10^{100}}}}\)
フズガーグーゴルプレックス \(\text{Googolplexplex}^{\text{Googolplexplex}}=10^{10^{10^{10^{100}}+10^{100}}}\)
フガグーゴルプレックス \(\text{Googolplexplex}\downarrow\downarrow\text{Googolplexplex}\approx10^{10^{10^{10^{102}}}}\)
エセトントリプレックス \(\text{E303#4}=10^{10^{10^{10^{303}}}}\)
ギガファクスル \((((200!)!)!)!\approx10^{10^{10^{10^{377}}}}\)
第五階乗数 \(5^{*}=((1+2)\times3)^{4}\uparrow\uparrow5=6561^{6561^{6561^{6561^{6561}}}}\)
グーゴルトリプレクシゴング \(\text{E100000#4}=10^{10^{10^{10^{100000}}}}\)

クラス6 ( \(10^{10^{10^{10^{10^{6}}}}}\) - \(10^{10^{10^{10^{10^{10^{6}}}}}}\) )

名前
ヘキサログ \(\text{E1#6}=10^{10^{10^{10^{10^{10}}}}}\)
デュセプティメヴァルカ \(2[2,7]=10^{10^{10^{10^{10^{22}}}}}\)
グーゴルクアドリプレックス \(10^{10^{10^{10^{10^{100}}}}}\)
フズガーガンツグーゴルプレックス \(\text{Googolplexplexplex}^{\text{Googolplexplexplex}}=10^{10^{10^{(10^{10^{100}}+10^{10^{100}})}}}\)
エセトンクアドリプレックス \(\text{E303#5}=10^{10^{10^{10^{10^{303}}}}}\)
テラファクスル \(((((200!)!)!)!)!\approx10^{10^{10^{10^{10^{377}}}}}\)
グーゴルクアドリプレクシゴング \(\text{E100000#5}=10^{10^{10^{10^{10^{100000}}}}}\)

テトレーションレベル

名前
ヘプタログ \(\text{E1#7}=10\uparrow\uparrow7\)
グーゴルクインプレックス \(\text{E100#6}=(10\uparrow)^{6}100\)
オクタログ \(\text{E1#8}=10\uparrow\uparrow8\)
グーゴルセクスティプレックス \(\text{E100#7}=(10\uparrow)^{7}100\)
エンナログ \(\text{E1#9}=10\uparrow\uparrow9\)
ベントレー数 \(\sum^{9}_{i = 0}10\uparrow\uparrow i\approx10\uparrow\uparrow9\)
グーゴルセプティプレックス \(\text{E100#8}=(10\uparrow)^{8}100\)
グーゴルオクティプレックス \(\text{E100#9}=(10\uparrow)^{9}100\)
グーゴルノニプレックス \(\text{E100#10}=(10\uparrow)^{10}100\)
グーゴルデシプレックス \(\text{E100#11}=(10\uparrow)^{11}100\)
ギゴル (giggol) \(10\uparrow\uparrow100\)
クーゴル ハイパー数学で\(10^{100}\approx\text{E19.3#99}=(10\uparrow)^{99}19.3\)
グーゴルセンチプレックス \(\text{E100#101}=(10\uparrow)^{101}100\)
メガ \(②=2[5]\approx10\uparrow\uparrow257\)
トリトリ \(3\uparrow\uparrow\uparrow3=3\uparrow\uparrow7625597484987\)

矢印表記レベル

名前
クーゴルプレックス ハイパー数学で\(10^{10^{100}}\approx10\uparrow\uparrow((10\uparrow)^{99}19.3)\)
第六階乗数 \(6^{*}=(((1+2)\times3)^{4}\uparrow\uparrow5)\uparrow\uparrow\uparrow6=(6561\uparrow\uparrow5)\uparrow\uparrow\uparrow6\)
\(=9[5]\approx9\uparrow\uparrow\uparrow10\)
メジストロン \(⑩=10[5]\approx10\uparrow\uparrow\uparrow11\)
ギャゴル \(\{10,100,3\}=10\uparrow\uparrow\uparrow100\)
フォークマン数 \(2\uparrow\uparrow\uparrow2^{901}\)
トリテット \(\{4,4,4\}=4\uparrow^{4}4\)
ルーミア数 \(\approx10\uparrow\uparrow\uparrow\uparrow10^{39}\)
トリペント \(\{5,5,5\}=5\uparrow^{5}5\)
トリデカル \(\{10,10,10\}=10\uparrow^{10}10\)
ブーゴル \(\{10,10,100\}=10\uparrow^{100}10=10\rightarrow10\rightarrow100\)

チェーン表記レベル

名前
モーザー数 \(2[②]=2[2[5]]\approx3\uparrow^{10\uparrow\uparrow257}3\)
小グラハム数 \(F^{7}(12)\ (\text{if}\ F(n)=2\uparrow^{n}3)\approx2\rightarrow3\rightarrow8\rightarrow2\)
グラハム数 \(G^{64}(4)\ (\text{if}\ G(n)=3\uparrow^{n}3)\approx3\rightarrow3\rightarrow64\rightarrow2\)
コーポラル \(\{10,100,1,2\}\approx10\rightarrow10\rightarrow100\rightarrow2\)
コンウェイのテトラトリ \(3\rightarrow3\rightarrow3\rightarrow3\)
超超第百階乗数 \(100^{*}_{(100,100:100)}\approx100\rightarrow100\rightarrow100\rightarrow100\)
テトラトリ \(\{3,3,3,3\}\approx3\rightarrow3\rightarrow3\rightarrow3\rightarrow4\approx A(1,0,0,3)\)
スーパーテット \(\{4,4,4,4\}\approx A(1,0,0,4)\)
白アスター数 \(\textrm{Ast}[5,\langle 64 \rangle]\)

多変数アッカーマンレベル

名前 近似値
ふぃっしゅ数バージョン1 \(SS^{63}[3,x+1,S]\) \(A(1,0,1,63)\)
ペンタトリ \(\{3,3,3,3,3\}\) \(A(1,0,0,0,3)\)
ふぃっしゅ数バージョン2 \(SS_{2}^{63}[3,x+1,S]\) \(A(1,0,0,0,63)\)
七星剣数 \(c([7\ (77)],[7\ (7),7,7])\) \(A(1,0,0,1,77)\)
ヘキサトリ \(\{3,3,3,3,3,3\}\) \(A(1,0,0,0,0,3)\)
クワドリーゴル \(\{10,10,10,10,100,4\}\) \(A(4,0,0,0,100)\)
夏おこじょ数 \(\frac{1}{Oe}\) \(A(\underbrace{1,1,\cdots,1}_{53})=f_{\omega^{\omega}}(53)\)

カントール標準形レベル

名前 近似値
ふぃっしゅ数バージョン3 \([ss(2)^{63}(x+1)]^{63}(3)\) \(f_{\omega^{\omega+1}\times63+1}(63)\)
ザッポル \(\{10,10\ (2)\ 2\}\) \(f_{\omega^{\omega^{2}}}(10)\)
ペトソル \(\{10,10\ (5)\ 2\}\) \(f_{\omega^{\omega^{5}}}(10)\)
ゴンギュラス \(\{10,10\ (100)\ 2\}\) \(f_{\omega^{\omega^{100}}}(10)\)
第二多重境界数 \(\left.\begin{matrix}\overbrace{\{8,8,\{8\}\ 8\}}^{\overbrace{\hspace{1em}\vdots\hspace{1em}}^{\overbrace{\hspace{-1em}\{8,8,\{{\cdots}\}\ 8\}}^{\hspace{-1em}\{8,8,\{{\cdots}\}\ 8\}}}}\end{matrix}\right\}8\) \(f_{\omega^{\omega^\omega}+2}(8)\)
デュラトリ \(\{3,3\ (0,2)\ 2\}\) \(f_{\omega^{\omega^{\omega 2}}}(3)\)
正体不明の飛行円盤と源三位頼政の弓数 \(f_{(②\uparrow(②\uparrow(②\rightarrow②\rightarrow②)))}\hspace{1em}(②)\) \(f_{\omega^{\omega^\omega}+3}(f_{3}(257))\)
ヘクセルガサー \(\text{E100#^#^######100}\) \(f_{\omega^{\omega^{\omega^6}}}(100)\)
グラルタートル \(\text{E100#^#^#^#^##100}\) \(f_{\omega^{\omega^{\omega^{\omega^{\omega^2}}}}}(100)\)
ゴッパトス \(10\uparrow\uparrow100\&10\) \(f_{\varepsilon_0}(100)\)
ネスト角括弧数 \(10T[[[...[0]...]]]100\) \(f_{\varepsilon_0}(100)\)

計算可能レベル

以下で用いられる\(\vartheta\)や\(\psi\)はどの関数であるか不明であるため、解析の数学的な意味は不明である。

名前 近似値
ゴッパトスプレックス \(10\uparrow\uparrow\text{Goppatoth}\&10\) \(f_{\varepsilon_0}(f_{\varepsilon_0}(100))\)
のびーるワーム数 \(N^{10}(3)\) \(f_{\varepsilon_0}^{10}(2)\)
リザレクション数列数 \(M^{10}(10)\) \(f_{\varepsilon_0}^{10}(3)\)
原始数列数 \(P^{10}(9)\) \(f_{\varepsilon_0+1}(10)\)
ふぃっしゅ数バージョン5 \(F^{63}_{5}(3)\) \(f_{\varepsilon_0+1}(63)\)
フラン数第四形態改三 \(\text{o-o[<5>o]5}\) \(f_{\varepsilon_4^{\varepsilon_4^{\varepsilon_4}}}(5)\)
巨大壮絶テスラソス \(\text{E100#^^#>#100#2}\) \(f_{\varepsilon_\omega}(f_{\varepsilon_\omega}(100))\)
ふぃっしゅ数バージョン6 \(F^{63}_{6}(3)\) \(f_{\varphi(2,0) + 1}(63)\)
E2:B-01-Hs \(B^{108}(108)\) \(f_{\varphi(\omega,0)+1}(108)\)
バシクトリ \((0,0)(1,1)(2,1)(3,1)(2,0)(1,1)(2,1)(3,1)[3]\) \(f_{\Gamma_{\omega+1}}(9)\)
TREE(3)の下界の1つ \(f_{\vartheta(\Omega^\omega)+2}(f_{\vartheta(\Omega^\omega)+1}(f_{\vartheta(\Omega^\omega)}(8)))\)
バード数 \(\underbrace{\text{X}(\text{X}(...\text{X}(\text{X}(N))...))}_{\text{X}(N)}\) \(f_{\vartheta(\Omega^{\omega})+2}(f_{\vartheta(\Omega^{\omega})+1}(f^2_{\vartheta(\Omega^{\omega})}(7)))\)
SCG(13)の下界の1つ \(f_{\psi_{\Omega_1}(\Omega_{\omega})}(13)\)
ペア数列数 \(f_{\psi_0(\Omega_\omega)+1}(10)\)
段階配列数 \(g^{100}(100)\) \(f_{\psi_0(\Omega_\omega)+1}(100)\)
ハイパー原始数列数 \(f^{2000}(1)\) \(f_{\psi_0(\Omega_\omega)+1}(2000)\)
ユウレイ数 \(g^{69}(24)\) \(f_{\psi(\epsilon_{\Omega_\omega+1})}^{69}(24)\)
BIGG \(200?\) \(f_{\psi(\psi_{I_\omega}(0))}(200)\)

以下は厳密な定義が完成していないけれど完成した場合にはFGHによる近似ができると期待されているものを記す。

名前 期待される近似値
トリアクルス \(3\&3\&3\) \(f_{\varphi(2,0)}(3)\)
カングルス \(\{10,100,3\}\&10\) \(f_{\zeta_0}(100)\)
カングルスプレックス \(\{10,\text{Kungulus},3\}\&10\) \(f_{\zeta_0}(f_{\zeta_0}(100))\)
クアドランクルス \(\{10,100,4\}\&10\) \(f_{\varphi(3,0)}(100)\)
トリデカトリックス \(\{10,10,10\}\&10\) \(f_{\varphi(9,0)}(10)\)
ヒュモングルス \(\{10,10,100\}\&10\) \(f_{\varphi(99,0)}(10)\)
ゴラプルス \(\{10,100\}\&10\&10\) \(f_{\vartheta(\Omega^{\Omega^{100}})}(10)\)
ゴラプルスプレックス \(\{10,100\}\&10\&10\&10\) \(f_{\vartheta(\Omega_2^{\Omega_2^{100}})}(10)\)
ビッグブーワ \(\{3,3,3 / 2\}\) \(f_{\vartheta(\Omega_{\omega})+2}(3)\)
ウォンポギュラス \(\{10,10 (10) 2 / 100\}\) \(f_{\vartheta(\Omega_{\omega})100+\omega^{\omega^\omega}}(10)\)
ビッグホス \(\{\text{L},100^{100}\}_{100,100}\) \(f_{\psi(\psi_I(0))}(100)\)
ブクワハ \(\{100,100\ \text{A}\ 2\}\) \(f_{\psi(\psi_I(I^{I^\omega}))}(100)\)

以下はFGHによる近似値が知られていないほど大きいと考えられているため、代わりにどのような再帰的理論を対角化しているか、またはどのような再帰的理論の下で停止性の証明可能な計算可能関数の値であるかを記す。

名前 理論
ローダー数 CoCを対角化
最小の超越整数 ZFCを対角化(ZFC+Con(ZFC)で証明可能)
有限約束ゲームで\(\mathrm{FPLCI}^{10}(100)\) SMAH+で証明可能
欲張りクリーク列で\(\mathrm{USGCS}^{10}(100)\) SRP+で証明可能
欲張りクリーク列で\(\mathrm{USGDCS}_2^{10}(100)\) HUGE+で証明可能
レイバーのテーブル ZFC+I3で証明可能

以下はどのような再帰的理論の下で停止性が証明可能な計算可能関数の値であるかさえ知られていないものや、厳密な定義が完成していないが完成した場合にはFGHによる近似が不明なほど大きいと期待している者が存在するものを記す。

名前
状態
ゴショミティー \(\{\text{L}2,100\}_{100,100}\) 未定義
ミーミーミーロッカプーワ・ウンパ \(\{\{\text{L}100,10\}_{10,10}\&\text{L},10\}_{10,10}\) 未定義
バシク行列数 BM4において\(\textrm{Bm}(n) := \textrm{expand}(\underbrace{(0,\ldots,0)}_{n+1}\underbrace{(1,\ldots,1)}_{n+1}[n])\)とした時の\(\textrm{Bm}^{10}(9)\) 停止性不明
\((1,a,6) \in \textrm{dom}(F)\)かつ\(\textrm{Lng}(a) \leq 6\)かつ\(a\)の成分の総和が\(6 \times 6\)以下となる数列\(a\)を用いてN3.0で\(F^1[a](6)\)と表されるかまたは\(6\)であるような自然数全体の集合の中で最大のもの 停止性不明
Y数列数 \(f(n) := Y(1,\omega)[n]\)とした時の\(f^{2000}(1)\) 停止性不明

計算不可能レベル

関連項目

参考文献

  1. C. Bays and R. H. Hudson, A new bound for the smallest x with π(x) > li(x), Mathematics of Computation, Volume 69, Number 231 (2000), pp. 1285–-1296.
特に記載のない限り、コミュニティのコンテンツはCC-BY-SA ライセンスの下で利用可能です。