交流階乗とは、数nに対し\(\sum^n_{i = 1} (-1)^{n - i} \cdot i!\)と定義してある。これは、1~nの階乗を正負を反転させて足し合わせた数に等しい。例えば、5の交流階乗は\(1! - 2! + 3! - 4! + 5!=101\)である。[1]

出典

特に記載のない限り、コミュニティのコンテンツはCC-BY-SAライセンスの下で利用可能です。