ハイパー原始数列は ゆきとによって考案された数列表記である。[1][2] バシク行列システムを1行に限定した原始数列システムを、階差数列を考えることによって拡張している。この表記は、 急増加関数ブーフホルツのψ関数を用いて \(f_{\psi_0(\Omega_{\omega})}(n)\) と近似される。

Although it has the same limit as ペア数列システム, it expands in a way compatible with the system of fundamental sequences for Buchholz's function unlike pair sequence system.

Definition

A term in the notation is a finite sequence \(S = (S_i)_{i=1}^{m}\) of natural numbers followed by a natural number \(n\) in a bracket, i.e. an expression of the form \((S_1,\ldots,S_m)[n]\). It is evaluated in the following recursive way:

  1. If \(m = 0\), then set \(S[n] = n\).
  2. Suppose \(m > 0\).
    1. For an \(i \in \mathbb{N}\) satisfying \(i \leq m\), put \(P_i = \{j \in \mathbb{N} \mid 1 \leq j < i \land S_j < S_i\}\).
    2. Put \(k = 0\).
    3. If \(k = 0\), then put \(m_k = m\).
    4. If \(k > 0\), then put \(m_k = \max P_{m_{k-1}}\).
    5. If \(P_{m_k} \neq \emptyset\), then increment \(k\), and go back to the line 2-3.
    6. Define a finite sequence \(\textrm{Expand}(S,n)\) in the following way:
      1. If \(k = 0\), then put \(\textrm{Expand}(S,n) = (S_1,\ldots,S_{m-1})\).
      2. Suppose \(k > 0\).
        1. Denote by \(N = (N_i)_{i=0}^{k-1}\) the difference sequence \((S_{m_{i+1}}-S_{m_i})_{i=0}^{k-1}\) of \((S_{m_i})_{i=0}^{k}\).
        2. Define the bad root \(r\) and the ascention level \(\delta\) in the following way:
          1. Suppose \(N_0 = 1\).
            1. Put \(r = m_1\).
            2. Put \(\delta = 0\).
          2. Suppose \(N_0 \neq 1\).
            1. Suppose that there does not exist an \(i \in \mathbb{N}\) such that \(0 < i \leq k-1\) and \(N_i < N_0\).
              1. Put \(r = 1\).
              2. Put \(\delta = S_m - 1\).
            2. Suppose that such an \(i\) exists.
              1. Denote by \(p\) the minimum of such an \(i\).
              2. Put \(r = m_p\).
              3. Put \(\delta = S_m - S_r - 1\).
        3. Put \(G = (S_i)_{i=1}^{r-1}\). (If \(r = 1\), then it is the empty sequence.)
        4. For an \(h \in \mathbb{N}\), put \(B(h) = (S_i + h \delta)_{i=r}^{m-1}\).
        5. Then \(\textrm{Expand}(S,n)\) is the concaternation of \(G,B(0),\ldots,B(n)\).
    7. Set \(S[n] = \textrm{Expand}(S,n)[n+1]\).

The function \((0,\omega)[n]\) defined as \((0,n)[n]\) gives the limit of this notation.

Standard form

The set \(OT\) of finite sequences of standard forms in hyper primitive sequence system is defined in the following recursive way:

  1. For any \(n \in \mathbb{N}\), \((0,n) \in OT\).
  2. For any \((S,n) \in (OT \setminus \{()\}) \times \mathbb{N}\), \(\textrm{Expand}(S,n) \in OT\).

Then \(OT\) is a recursive subset of the set \(T\) of finite sequences of natural numbers, and \(\textrm{Expand}\) gives a primitive recursive map \((T \setminus \{()\}) \times \mathbb{N} \to T\), which preserves standard forms.

Explanation

Follow the convention and the terminology in the article on difference sequences. Hyper primitive sequence system employs the bad root searching rule \(\textrm{Parent} \colon \textrm{FinSeq} \times \mathbb{N} \to \textrm{FinSeq}\) for the primitive sequence system explained here. Indeed \((m_i)_{i=0}^{k}\) and \(N\) in the definition of \(S[n]\) precisely coincide with \(\textrm{Ancestors}(S)\) and \(\textrm{Kaiser}(S)\) respectively.

If \(\textrm{Ancestors}(S)\) is of length \(1\), then \(S\) is a successor term, and \(\textrm{Expand}(S,n)\) is obtained by deleting the rightmost entry of \(S\). If \(\textrm{Ancestors}(S)\) is of length \(> 1\), then apply an expansion rule to \(\textrm{Kaiser}(S)\) quite similar to the one in primitive sequence system; if \(\textrm{Ancestors}(\textrm{Kaiser}(S))\) is of length \(1\), then decrement the rightmost entry of \(\textrm{Kaiser}(S)\), and otherwise, copy the bad part of \(\textrm{Kaiser}(S)\) with respect to \(\textrm{Parent}\). Denote by \(\textrm{Kaiser}(S)(n)\) the resulting finite sequence. As \(\textrm{Kaiser}(S)\) is the differece sequence of \(\textrm{RightNodes}(S)\), \(\textrm{Kaiser}(S)(n)\) is the difference sequence of a unique finite sequence \(\textrm{RightNodes}(S)(n)\) whose first entry is \(\textrm{RightNodes}(S)_0\). Finally, \(\textrm{Expand}(S,n)\) is given by replacing the subsequence \(\textrm{RightNodes}(S)\) of \(S\) by \(\textrm{RightNodes}(S)(n)\) and interpolating the intermidiate entries by the copies of the corresponding entries of \(S\) modified by the ascention level.

Through the interpretation above, hyper primitive sequence system can be regarded as an analog of the system of two-lined hydra diagrams, which corresponds to pair sequence system.

Termination

For the convention and the terminology, see the following:

  • [Buc1] W. Buchholz, A new system of proof-theoretic ordinal functions, Annals of Pure and Applied Logic, Volume 32, 1986, pp. 195–207.
  • [Buc2] W. Buchholz, Relating ordinals to proofs in a perspicious way, Reflections on the Foundations of Mathematics, Essays in Honor of Solomon Feferman, Lecture Notes in Logic, vol. 15, 2002, pp. 37–59.

The termination of hyper primitive sequence system has been proved by a Japanese Googology Wiki user p進大好きbot in the following way:

Let \(T_B\) denote the set of terms in Buchholz's notation, in which \(D_{\omega}\) does not appear.[3] Define a total recursive map \begin{eqnarray*} \textrm{Trans} \colon T_B & \to & T \\ t & \mapsto & \textrm{Trans}(t) \end{eqnarray*} in the following recursive way:

  1. If \(t = 0\), then set \(\textrm{Trans}(t) = ()\).
  2. Suppose \(t = t_0 + D_u t_1\) for some \((u,t_0,t_1) \in \mathbb{N} \times T_B \times T_B\).[4]
    1. If \(t_1 = D_0 0 \cdot m\) for some \(m \in \mathbb{N}\), then \(\textrm{Trans}(t)\) is the concatenation of \(\textrm{Trans}(t_0)\) and \((u,\underbrace{u+1,\ldots,u+1}_{m})\).[5]
    2. Otherwise, \(\textrm{Trans}(t)\) is the concatenation of \(\textrm{Trans}(t_0)\), \((u)\), and the finite sequence obtained by adding \(u+1\) to each entry of \(\textrm{Trans}(t_1)\).

Let \(OT_B \subset T_B\) denote the subset of ordinal terms below \(D_1 0\).[6]

Lemma (Compatibility of \(\textrm{Trans}\))
The restriction of \(\textrm{Trans}\) to \(OT_B\) satisfies the following:: (1) It is a bijective map onto \(OT\).
(2) For any \((t,n) \in (OT_B \setminus \{0\}) \times \mathbb{N}\), \(\textrm{Trans}(t) \neq ()\), and there exists a \(t' \in OT_B\) such that \(\textrm{Trans}(t') = \textrm{Expand}(\textrm{Trans}(t),n)\) and \(t' < t\). If \(n > 0\) then such a \(t'\) can be taken so that \(t[n-1] < t' \leq t[n]\).[7]
proof
For an \(m \in \mathbb{N}\), define \(\Sigma_m \subset OT_B\) in the following recursive way:
  1. If \(m = 0\), then set \(\Sigma_m = \{D_0 D_u 0 \mid u \in \mathbb{N} \land u > 0\}\).
  2. If \(m > 0\), then set \(\Sigma_m = \Sigma_{m-1} \cup \{t[n] \mid (t,n) \in \Sigma_{m-1} \times \mathbb{N}\}\).
By [Buc1] 2.2 Lemma (c) and 2.3 Lemma (b), we have \(\bigcup_{m \in \mathbb{N}} \Sigma_m = OT_B\).
Let \(t \in OT_B\). By the argument above, there exists an \(m \in \mathbb{N}\) such that \(t \in \Sigma_m\). Denote by \(\mu\) the minimum of such an \(m\). We show \(\textrm{Trans}(t) \in OT\) by induction of \(\mu\).
If \(\mu = 0\), then we have \(t = D_0 D_u 0\) for some \(u \in \mathbb{N}\) satisfying \(u > 0\), and hence \(\textrm{Trans}(t) = (0,u) \in OT\). Suppose \(\mu > 0\) in the following. Take a \((t',n) \in \Sigma_{\mu-1} \times \mathbb{N}\) satisfying \(t = t'[n]\). By the induction hypothesis, we have \(\textrm{Trans}(t') \in OT_B\). By \(t \notin \Sigma_{\mu-1}\), we have \(t \neq t'\), and hence \(t' \neq 0\). It implies \(t = t'[n] < t'\) by [Buc1] 3.2 Lemma (a).
Take a unique \((u,t_0,t_1) \in \mathbb{N} \times OT_B \times OT_B\) satisfying \(t' = t_0 + D_u t_1\). By the definition of \(\textrm{Expand}\) and \(\textrm{Trans}\), we have \(\textrm{Trans}(t) = \textrm{Expand}(\textrm{Trans}(t'),n) \in OT_B\) unless \(\textrm{dom}(t_1) = T_v\) for some \(v \in \mathbb{N}\) satifying \(u \leq v\).[8] Therefore we may assume \(\textrm{dom}(t_1) = T_v\) for some \(v \in \mathbb{N}\) satifying \(u \leq v\).
For each \(m \in \mathbb{N}\), denote by \(t_2(m)\) a unique ordinal term satisfying \(o(t_2(m)) = o(t'(m))\), where \(t'(m)\) is the term obtained by replacing the rightmost appearrence of \(D_v 0\) in \(t'[m]\) by \(0\).[9] Again by the definition of \(\textrm{Expand}\) and \(\textrm{Trans}\), \(\textrm{Trans}(t_2(m))\) and \(\textrm{Trans}(t'(m))\) coincide with \(\textrm{Expand}(\textrm{Trans}(t'),m)\).
We have \(t_2(n) \leq t'(n) < t \leq t_2(n+1) \leq t'(n+1)\), and \(t\) coincides with the term obtained by replacing the righmost appearrence of \(0\) in \(t'(n)\) by \(D_v 0\) because of \(t = t'[n]\). Therefore \(\textrm{Trans}(t)\) coincides with the concatenation of \(\textrm{Trans}(t'(n))\) and \((a+v+1)\), where \(a\) is the next rightmost entry of \(\textrm{RightNodes}(\textrm{Trans}(t))\) with respect to the bad root searching rule \(\textrm{Parent}\), and \(\textrm{Trans}(t'(n+1))\) coincides with the concatenation of \(\textrm{Trans}(t)\) and a finite sequence. Since the deletion of the rightmost entry is given by the application of \(\textrm{Expand}(-,0)\), it implies \(t \in OT\).
Thus the restriction of \(\textrm{Trans}\) to \(OT_B\) gives a map to \(OT\). The assertions (1) and (2) immediately follow from the argument above, because of \(\textrm{Trans}(D_0 0 + D_0 0) = (0,0)\) and \(\textrm{Trans}(D_u 0) = (0,u)\) for any \(u \in \mathbb{N}\) satisfying \(u > 0\). □

As is shown in the proof above, hyper primitive sequence system is quite compatible with Buchholz's ordinal notation unlike pair sequence system. By Lemma and [Buc1] 2.2 Lemma (c), we immediately obtain the termination of hyper primitive sequence system restricted to standard forms.

Theorem (The termination of hyper primitive sequence system)
Let \(S \in OT \setminus \{()\}\). For any map \(f \colon \mathbb{N} \to \mathbb{N}\), there exists a unique finite sequence \((X_k)_{k=0}^{N}\) in \(OT\) such that \(X_0 = S\), \(X_k\) is a non-empty sequence satisfying \(\textrm{Expand}(X_k,f(k)) = X_{k+1}\) for any \(k \in \mathbb{N}\) smaller than \(N+1\), and \(X_N= ()\).

Analysis

By Lemma (2), the limit of hyper primitive sequence is \(\psi_0(\Omega_{\omega})\) in ハーディ階層 with respect to a minor replacedment of the recursive system of fundamental sequences assciated to Buchholz's ordinal notation. In particular, it is also approximated to \(\psi_0(\Omega_{\omega})\) in 急増加関数. The composite \begin{eqnarray*} o \circ (\textrm{Trans} |_{OT_B})^{-1} \colon OT \to \psi_0(\Omega_{\omega}) \end{eqnarray*} gives an interpretation of terms in hyper primitive sequence system of standard form into ordinals below \(\psi_0(\Omega_{\omega})\). The following table exhibits examples of the correspondence:

hyper primitive seqeunce ordinal
\(()\) \(0\)
\((0)\) \(1\)
\((0,0)\) \(2\)
\((0,0,0)\) \(3\)
\((0,1)\) \(\omega\)
\((0,1,0)\) \(\omega+1\)
\((0,1,0,0)\) \(\omega+2\)
\((0,1,0,0,0)\) \(\omega+3\)
\((0,1,0,1)\) \(\omega \times 2\)
\((0,1,0,1,0)\) \(\omega \times 2+1\)
\((0,1,0,1,0,0)\) \(\omega \times 2+2\)
\((0,1,0,1,0,0,0)\) \(\omega \times 2+3\)
\((0,1,0,1,0,1)\) \(\omega \times 3\)
\((0,1,1)\) \(\omega^2\)
\((0,1,1,0)\) \(\omega^2+1\)
\((0,1,1,0,0)\) \(\omega^2+2\)
\((0,1,1,0,1)\) \(\omega^2+\omega\)
\((0,1,1,0,1,0)\) \(\omega^2+\omega+1\)
\((0,1,1,0,1,1)\) \(\omega^2 \times 2\)
\((0,1,1,1)\) \(\omega^3\)
\((0,1,2)\) \(\omega^{\omega}\)
\((0,1,2,1)\) \(\omega^{\omega+1}\)
\((0,1,2,1,1)\) \(\omega^{\omega+2}\)
\((0,1,2,1,2)\) \(\omega^{\omega \times 2}\)
\((0,1,2,2)\) \(\omega^{\omega^2}\)
\((0,1,2,2,1)\) \(\omega^{\omega^2+1}\)
\((0,1,2,2,1,1)\) \(\omega^{\omega^2+2}\)
\((0,1,2,2,1,2)\) \(\omega^{\omega^2+\omega}\)
\((0,1,2,2,1,2,1)\) \(\omega^{\omega^2+\omega+1}\)
\((0,1,2,2,1,2,1,1)\) \(\omega^{\omega^2+\omega+2}\)
\((0,1,2,2,1,2,1,2)\) \(\omega^{\omega^2+\omega \times 2}\)
\((0,1,2,2,1,2,2)\) \(\omega^{\omega^2 \times 2}\)
\((0,1,2,2,2)\) \(\omega^{\omega^3}\)
\((0,1,2,3)\) \(\omega^{\omega^{\omega}}\)
\((0,2)\) \(\varepsilon_0 = \psi_0(\Omega)\)
\((0,2,1)\) \(\varepsilon_0 \times \omega = \psi_0(\Omega+1)\)
\((0,2,1,1)\) \(\varepsilon_0 \times \omega^2 = \psi_0(\Omega+2)\)
\((0,2,1,2)\) \(\varepsilon_0 \times \omega^{\omega} = \psi_0(\Omega+\omega)\)
\((0,2,1,2,1)\) \(\varepsilon_0 \times \omega^{\omega+1} = \psi_0(\Omega+\omega+1)\)
\((0,2,1,2,1,1)\) \(\varepsilon_0 \times \omega^{\omega+2} = \psi_0(\Omega+\omega+2)\)
\((0,2,1,2,1,2)\) \(\varepsilon_0 \times \omega^{\omega \times 2} = \psi_0(\Omega+\omega \times 2)\)
\((0,2,1,2,2)\) \(\varepsilon_0 \times \omega^{\omega^2} = \psi_0(\Omega+\omega^2)\)
\((0,2,1,2,3)\) \(\varepsilon_0 \times \omega^{\omega^{\omega}} = \psi_0(\Omega+\omega^{\omega})\)
\((0,2,1,3)\) \(\varepsilon_0^2 = \psi_0(\Omega+\psi_0(\Omega))\)
\((0,2,1,3,1)\) \(\varepsilon_0^2 \times \omega = \psi_0(\Omega+\psi_0(\Omega)+1)\)
\((0,2,1,3,1,2)\) \(\varepsilon_0^2 \times \omega^{\omega} = \psi_0(\Omega+\psi_0(\Omega)+\omega)\)
\((0,2,1,3,1,2,3)\) \(\varepsilon_0^2 \times \omega^{\omega^{\omega}} = \psi_0(\Omega+\psi_0(\Omega)+\omega^{\omega})\)
\((0,2,1,3,1,3)\) \(\varepsilon_0^3 = \psi_0(\Omega+\psi_0(\Omega) \times 2)\)
\((0,2,1,3,2)\) \(\varepsilon_0^{\omega} = \psi_0(\Omega+\psi_0(\Omega+1))\)
\((0,2,1,3,2,1)\) \(\varepsilon_0^{\omega} \times \omega = \psi_0(\Omega+\psi_0(\Omega+1)+1)\)
\((0,2,1,3,2,1,2)\) \(\varepsilon_0^{\omega} \times \omega^{\omega} = \psi_0(\Omega+\psi_0(\Omega+1)+\omega)\)
\((0,2,1,3,2,1,2,3)\) \(\varepsilon_0^{\omega} \times \omega^{\omega^{\omega}} = \psi_0(\Omega+\psi_0(\Omega+1)+\omega^{\omega})\)
\((0,2,1,3,2,1,3)\) \(\varepsilon_0^{\omega+1} = \psi_0(\Omega+\psi_0(\Omega+1)+\psi_0(\Omega))\)
\((0,2,1,3,2,1,3,1)\) \(\varepsilon_0^{\omega+1} \times \omega = \psi_0(\Omega+\psi_0(\Omega+1)+\psi_0(\Omega)+1)\)
\((0,2,1,3,2,1,3,2)\) \(\varepsilon_0^{\omega \times 2} = \psi_0(\Omega+\psi_0(\Omega+1) \times 2)\)
\((0,2,1,3,2,2)\) \(\varepsilon_0^{\omega^2} = \psi_0(\Omega+\psi_0(\Omega+2))\)
\((0,2,1,3,2,2,1)\) \(\varepsilon_0^{\omega^2} \times \omega = \psi_0(\Omega+\psi_0(\Omega+2)+1)\)
\((0,2,1,3,2,2,2)\) \(\varepsilon_0^{\omega^3} = \psi_0(\Omega+\psi_0(\Omega+3))\)
\((0,2,1,3,2,3)\) \(\varepsilon_0^{\omega^{\omega}} = \psi_0(\Omega+\psi_0(\Omega+\omega))\)
\((0,2,1,3,2,3,1)\) \(\varepsilon_0^{\omega^{\omega}} = \psi_0(\Omega+\psi_0(\Omega+\omega)+1)\)
\((0,2,1,3,2,3,2)\) \(\varepsilon_0^{\omega^{\omega} \times \omega} = \psi_0(\Omega+\psi_0(\Omega+\omega+1))\)
\((0,2,1,3,2,3,3)\) \(\varepsilon_0^{\omega^{\omega^2}} = \psi_0(\Omega+\psi_0(\Omega+\omega^2))\)
\((0,2,1,3,2,3,4)\) \(\varepsilon_0^{\omega^{\omega^{\omega}}} = \psi_0(\Omega+\psi_0(\Omega+\omega^{\omega}))\)
\((0,2,1,3,2,4)\) \(\varepsilon_0^{\varepsilon_0} = \psi_0(\Omega+\psi_0(\Omega+\psi_0(\Omega)))\)
\((0,2,1,3,2,4,1)\) \(\varepsilon_0^{\varepsilon_0} \times \omega = \psi_0(\Omega+\psi_0(\Omega+\psi_0(\Omega))+1)\)
\((0,2,1,3,2,4,2)\) \(\varepsilon_0^{\varepsilon_0 \times \omega} = \psi_0(\Omega+\psi_0(\Omega+\psi_0(\Omega)+1))\)
\((0,2,1,3,2,4,3)\) \(\varepsilon_0^{\varepsilon_0^{\omega}} = \psi_0(\Omega+\psi_0(\Omega+\psi_0(\Omega+1)))\)
\((0,2,2)\) \(\varepsilon_0 \uparrow \uparrow \omega = \psi_0(\Omega \times 2)\)
\((0,2,2,1)\) \(\psi_0(\Omega \times 2+1)\)
\((0,2,2,2)\) \(\psi_0(\Omega \times 3)\)
\((0,2,3)\) \(\psi_0(\Omega \times \omega) = \psi_0(\psi_1(\psi_0(0)))\)
\((0,2,3,1)\) \(\psi_0(\Omega \times \omega + 1) = \psi_0(\psi_1(\psi_0(0))+\psi_0(0))\)
\((0,2,3,2)\) \(\psi_0(\Omega \times (\omega + 1)) = \psi_0(\psi_1(\psi_0(0))+\psi_1(0))\)
\((0,2,3,3)\) \(\psi_0(\Omega \times \omega^2) = \psi_0(\psi_1(\psi_0(0)+\psi_0(0)))\)
\((0,2,3,4)\) \(\psi_0(\Omega \times \omega^{\omega}) = \psi_0(\psi_1(\psi_0(\psi_0(0))))\)
\((0,2,3,4,1)\) \(\psi_0(\Omega \times \omega^{\omega}+1) = \psi_0(\psi_1(\psi_0(\psi_0(0)))+\psi_0(0))\)
\((0,2,3,4,2)\) \(\psi_0(\Omega \times (\omega^{\omega}+1)) = \psi_0(\psi_1(\psi_0(\psi_0(0)))+\psi_1(0))\)
\((0,2,3,4,3)\) \(\psi_0(\Omega \times \omega^{\omega+1}) = \psi_0(\psi_1(\psi_0(\psi_0(0))+\psi_0(0)))\)
\((0,2,3,4,4)\) \(\psi_0(\Omega \times \omega^{\omega \times 2}) = \psi_0(\psi_1(\psi_0(\psi_0(0)+\psi_0(0))))\)
\((0,2,3,4,5)\) \(\psi_0(\Omega \times \omega^{\omega^{\omega}}) = \psi_0(\psi_1(\psi_0(\psi_0(\psi_0(0)))))\)
\((0,2,3,5)\) \(\psi_0(\Omega \times \psi_0(\Omega)) = \psi_0(\psi_1(\psi_0(\psi_1(0))))\)
\((0,2,4)\) \(\psi_0(\Omega^2) = \psi_0(\psi_1(\psi_1(0)))\)
\((0,2,4,1)\) \(\psi_0(\Omega^2+1) = \psi_0(\psi_1(\psi_1(0))+\psi_0(0))\)
\((0,2,4,2)\) \(\psi_0(\Omega^2+\Omega) = \psi_0(\psi_1(\psi_1(0))+\psi_1(0))\)
\((0,2,4,3)\) \(\psi_0(\Omega^2 \times \omega) = \psi_0(\psi_1(\psi_1(0)+\psi_0(0)))\)
\((0,2,4,3,1)\) \(\psi_0(\Omega^2 \times \omega + 1) = \psi_0(\psi_1(\psi_1(0)+\psi_0(0))+\psi_0(0))\)
\((0,2,4,3,2)\) \(\psi_0(\Omega^2 \times \omega + \Omega) = \psi_0(\psi_1(\psi_1(0)+\psi_0(0))+\psi_1(0))\)
\((0,2,4,3,3)\) \(\psi_0(\Omega^2 \times \omega^2) = \psi_0(\psi_1(\psi_1(0)+\psi_0(0)+\psi_0(0)))\)
\((0,2,4,3,4)\) \(\psi_0(\Omega^2 \times \omega^{\omega}) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_0(0))))\)
\((0,2,4,3,5)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega)) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(0))))\)
\((0,2,4,3,5,1)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega)+1) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(0)))+\psi_0(0))\)
\((0,2,4,3,5,2)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega)+\Omega) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(0)))+\psi_1(0))\)
\((0,2,4,3,5,3)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega+1)) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(0))+\psi_0(0)))\)
\((0,2,4,3,5,4)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega+\omega)) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(0)+\psi_0(0))))\)
\((0,2,4,3,5,5)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega \times 2)) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(0)+\psi_1(0))))\)
\((0,2,4,3,5,6)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega \times \omega)) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_0(0)))))\)
\((0,2,4,3,5,6,1)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega \times \omega)+1) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_0(0))))+\psi_0(0))\)
\((0,2,4,3,5,6,2)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega \times \omega)+\Omega) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_0(0))))+\psi_1(0))\)
\((0,2,4,3,5,6,3)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega \times \omega+1)) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_0(0)))+\psi_0(0)))\)
\((0,2,4,3,5,6,4)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega \times \omega+\omega))= \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_0(0))+\psi_0(0))))\)
\((0,2,4,3,5,6,5)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega \times (\omega+1))) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_0(0))+\psi_1(0))))\)
\((0,2,4,3,5,6,6)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega \times \omega^2)) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_0(0)+\psi_0(0)))))\)
\((0,2,4,3,5,6,7)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega \times \omega^{\omega})) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_0(\psi_0(0))))))\)
\((0,2,4,3,5,6,8)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega \times \psi_0(\Omega))) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_0(\psi_1(0))))))\)
\((0,2,4,3,5,7)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega^2)) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_1(0)))))\)
\((0,2,4,3,5,7,1)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega^2)+1) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_1(0))))+\psi_0(0))\)
\((0,2,4,3,5,7,2)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega^2)+\Omega) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_1(0))))+\psi_1(0))\)
\((0,2,4,3,5,7,3)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega^2+1)) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_1(0)))+\psi_0(0)))\)
\((0,2,4,3,5,7,4)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega^2)^{\omega}) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_1(0))+\psi_0(0))))\)
\((0,2,4,3,5,7,5)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega^2+\Omega)) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_1(0))+\psi_1(0))))\)
\((0,2,4,3,5,7,6)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega^2 \times \omega)) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_1(0)+\psi_0(0)))))\)
\((0,2,4,4)\) \(\psi_0(\Omega^3) = \psi_0(\psi_1(\psi_1(0)+\psi_1(0)))\)
\((0,2,4,4,1)\) \(\psi_0(\Omega^3+1) = \psi_0(\psi_1(\psi_1(0)+\psi_1(0))+\psi_0(0))\)
\((0,2,4,4,2)\) \(\psi_0(\Omega^3+\Omega) = \psi_0(\psi_1(\psi_1(0)+\psi_1(0))+\psi_1(0))\)
\((0,2,4,4,3)\) \(\psi_0(\Omega^3 \times \omega) = \psi_0(\psi_1(\psi_1(0)+\psi_1(0)+\psi_0(0)))\)
\((0,2,4,4,4)\) \(\psi_0(\Omega^4) = \psi_0(\psi_1(\psi_1(0)+\psi_1(0)+\psi_1(0)))\)
\((0,2,4,5)\) \(\psi_0(\Omega^{\omega}) = \psi_0(\psi_1(\psi_1(\psi_0(0))))\)
\((0,2,4,5,1)\) \(\psi_0(\Omega^{\omega}+1) = \psi_0(\psi_1(\psi_1(\psi_0(0)))+\psi_0(0))\)
\((0,2,4,5,2)\) \(\psi_0(\Omega^{\omega}+\Omega) = \psi_0(\psi_1(\psi_1(\psi_0(0)))+\psi_1(0))\)
\((0,2,4,5,3)\) \(\psi_0(\Omega^{\omega} \times \omega) = \psi_0(\psi_1(\psi_1(\psi_0(0))+\psi_0(0)))\)
\((0,2,4,5,4)\) \(\psi_0(\Omega^{\omega+1}) = \psi_0(\psi_1(\psi_1(\psi_0(0))+\psi_1(0)))\)
\((0,2,4,5,5)\) \(\psi_0(\Omega^{\omega^2}) = \psi_0(\psi_1(\psi_1(\psi_0(0)+\psi_0(0))))\)
\((0,2,4,5,6)\) \(\psi_0(\Omega^{\omega^{\omega}}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_0(0)))))\)
\((0,2,4,5,7)\) \(\psi_0(\Omega^{\psi_0(\Omega)}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(0)))))\)
\((0,2,4,5,7,1)\) \(\psi_0(\Omega^{\psi_0(\Omega)}+1) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(0))))+\psi_0(0))\)
\((0,2,4,5,7,2)\) \(\psi_0(\Omega^{\psi_0(\Omega)}+\Omega) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(0))))+\psi_1(0))\)
\((0,2,4,5,7,3)\) \(\psi_0(\Omega^{\psi_0(\Omega)} \times \omega) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(0)))+\psi_0(0)))\)
\((0,2,4,5,7,4)\) \(\psi_0(\Omega^{\psi_0(\Omega)+1}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(0)))+\psi_1(0)))\)
\((0,2,4,5,7,5)\) \(\psi_0(\Omega^{\psi_0(\Omega+1)}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(0))+\psi_0(0))))\)
\((0,2,4,5,7,6)\) \(\psi_0(\Omega^{\psi_0(\Omega)^{\omega}}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(0)+\psi_0(0)))))\)
\((0,2,4,5,7,7)\) \(\psi_0(\Omega^{\psi_0(\Omega \times 2)}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(0)+\psi_1(0)))))\)
\((0,2,4,5,7,8)\) \(\psi_0(\Omega^{\psi_0(\Omega \times \omega)}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(\psi_0(0))))))\)
\((0,2,4,5,7,8,1)\) \(\psi_0(\Omega^{\psi_0(\Omega \times \omega)}+1) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(\psi_0(0)))))+\psi_0(0))\)
\((0,2,4,5,7,8,2)\) \(\psi_0(\Omega^{\psi_0(\Omega \times \omega)}+\Omega) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(\psi_0(0)))))+\psi_1(0))\)
\((0,2,4,5,7,8,3)\) \(\psi_0(\Omega^{\psi_0(\Omega \times \omega)} \times \omega) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(\psi_0(0))))+\psi_0(0)))\)
\((0,2,4,5,7,8,4)\) \(\psi_0(\Omega^{\psi_0(\Omega \times \omega)+1}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(\psi_0(0))))+\psi_1(0)))\)
\((0,2,4,5,7,8,5)\) \(\psi_0(\Omega^{\psi_0(\Omega \times \omega+1)}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(\psi_0(0)))+\psi_0(0))))\)
\((0,2,4,5,7,8,6)\) \(\psi_0(\Omega^{\psi_0(\Omega \times \omega)^{\omega}}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(\psi_0(0))+\psi_0(0)))))\)
\((0,2,4,5,7,8,7)\) \(\psi_0(\Omega^{\psi_0(\Omega \times (\omega+1))}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(\psi_0(0))+\psi_1(0)))))\)
\((0,2,4,5,7,8,8)\) \(\psi_0(\Omega^{\psi_0(\Omega \times \omega^2)}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(\psi_0(0)+\psi_0(0))))))\)
\((0,2,4,5,7,8,9)\) \(\psi_0(\Omega^{\psi_0(\Omega \times \omega^{\omega})}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(\psi_0(\psi_0(0)))))))\)
\((0,2,4,5,7,8,10)\) \(\psi_0(\Omega^{\psi_0(\Omega \times \psi_0(\Omega))}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(\psi_0(\psi_1(0)))))))\)
\((0,2,4,5,7,9)\) \(\psi_0(\Omega^{\psi_0(\Omega^2)}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(\psi_1(0))))))\)
\((0,2,4,6)\) \(\psi_0(\Omega^{\Omega}) = \psi_0(\psi_1(\psi_1(\psi_1(0))))\)
\((0,3)\) \(\psi_0(\Omega_2) = \psi_0(\psi_2(0))\)
\((0,3,1)\) \(\psi_0(\Omega_2+1) = \psi_0(\psi_2(0)+\psi_0(0))\)
\((0,3,2)\) \(\psi_0(\Omega_2+\Omega) = \psi_0(\psi_2(0)+\psi_1(0))\)
\((0,3,3)\) \(\psi_0(\Omega_2 \times 2) = \psi_0(\psi_2(0)+\psi_2(0))\)
\((0,3,4)\) \(\psi_0(\Omega_2 \times \omega) = \psi_0(\psi_2(\psi_0(0)))\)
\((0,3,5)\) \(\psi_0(\Omega_2 \times \Omega) = \psi_0(\psi_2(\psi_1(0)))\)
\((0,3,6)\) \(\psi_0(\Omega_2^2) = \psi_0(\psi_2(\psi_2(0)))\)
\((0,4)\) \(\psi_0(\Omega_3) = \psi_0(\psi_3(0))\)
\((0,n+1)\) \(\psi_0(\Omega_n) = \psi_0(\psi_n(0))\)

Sources

  1. ゆきとの巨大数研究wikiのユーザーページ
  2. ゆきと, ハイパー原始数列
  3. The notation is defined in [Buc1] p. 200.
  4. The addition is defined in [Buc1] p. 203.
  5. The scalar multiplication is defined in [Buc1] p. 203.
  6. The notion of an ordinal term is defined in [Buc1] p. 201.
  7. The recursive system of fundamental sequences is defined in [Buc1] p. 203--204 except for the case of ([].4) (ii). Replacing ([].4) (ii) by the rule 6 in Definition in [Buc2] p. 6 applied to the convention \(\Omega_0 = 1\), we obtain the full definition of the recursive system of fundamental sequences.
  8. The map \(\textrm{dom}\) is defined in [Buc1] p. 203--204.
  9. The map \(o\) is defined in [Buc1] p. 201.

関連項目

日本の巨大数論

ふぃっしゅ数: バージョン1バージョン2バージョン3バージョン4バージョン5バージョン6バージョン7
写像: S変換SS変換s(n)変換m(n)変換m(m,n)変換
Aeton: おこじょ数N成長階層
バシク: 原始数列数ペア数列数バシク行列システム
mrna: 段階配列表記
p進大好きbot: 巨大数庭園数
ゆきと: ハイパー原始数列Y数列
たろう: 多変数2重リスト多重リスト
クロちゃん数: 第一クロちゃん数第二クロちゃん数第三クロちゃん数第四クロちゃん数
マシモ: マシモ関数マシモスケール
本: 巨大数論寿司虚空編
大会: 東方巨大数幻想巨大数即席巨大数式神巨大数
掲示板: 巨大数探索スレッド
外部リンク: 日本語の巨大数関連サイト

特に記載のない限り、コミュニティのコンテンツはCC-BY-SAライセンスの下で利用可能です。